Early Stage Influenza Detection from Twitter
نویسندگان
چکیده
Influenza is an acute respiratory illness that occurs virtually every year and results in substantial disease, death and expense. Detection of Influenza in its earliest stage would facilitate timely action that could reduce the spread of the illness. Existing systems such as CDC and EISS which try to collect diagnosis data, are almost entirely manual, resulting in about two-week delays for clinical data acquisition. Twitter, a popular microblogging service, provides us with a perfect source for early-stage flu detection due to its realtime nature. For example, when a flu breaks out, people that get the flu may post related tweets which enables the detection of the flu breakout promptly. In this paper, we investigate the real-time flu detection problem on Twitter data by proposing Flu Markov Network (Flu-MN): a spatio-temporal unsupervised Bayesian algorithm based on a 4 phase Markov Network, trying to identify the flu breakout at the earliest stage. We test our model on real Twitter datasets from the United States along with baselines in multiple applications, such as real-time flu breakout detection, future epidemic phase prediction, or Influenza-like illness (ILI) physician visits. Experimental results show the robustness and effectiveness of our approach. We build up a real time flu reporting system based on the proposed approach, and we are hopeful that it would help government or health organizations in identifying flu outbreaks and facilitating timely actions to decrease unnecessary mortality.
منابع مشابه
Detection of Twitter Users' Attitudes about Flu Vaccine based on the Content and Sentiment Analysis of the Sent Tweets
Introduction: The influenza vaccine is one of the controversial challenges in today's societies. Considering the importance of using the flu vaccine in preventing the spread of influenza virus, the Twitter network, as a rich source of data, provides suitable conditions for research in this field to examine the attitudes of different people about this vaccine. The results in one hand will help h...
متن کاملDetection of Twitter Users' Attitudes about Flu Vaccine based on the Content and Sentiment Analysis of the Sent Tweets
Introduction: The influenza vaccine is one of the controversial challenges in today's societies. Considering the importance of using the flu vaccine in preventing the spread of influenza virus, the Twitter network, as a rich source of data, provides suitable conditions for research in this field to examine the attitudes of different people about this vaccine. The results in one hand will help h...
متن کاملTwitter Catches The Flu: Detecting Influenza Epidemics using Twitter
With the recent rise in popularity and scale of social media, a growing need exists for systems that can extract useful information from huge amounts of data. We address the issue of detecting influenza epidemics. First, the proposed system extracts influenza related tweets using Twitter API. Then, only tweets that mention actual influenza patients are extracted by the support vector machine (S...
متن کاملTwitter Improves Seasonal Influenza Prediction
Seasonal influenza epidemics causes severe illnesses and 250,000 to 500,000 deaths worldwide each year. Other pandemics like the 1918 “Spanish Flu” may change into a devastating one. Reducing the impact of these threats is of paramount importance for health authorities, and studies have shown that effective interventions can be taken to contain the epidemics, if early detection can be made. In ...
متن کاملThe Potential Effect of Glycyrrhiza Glabra on Early Step of Influenza Virus Replication
Background and Aims: The emergence of drug-resistant influenza viruses has become a serious threat for human and animal populations. Glycyrrhiza glabra (Gg) is a traditional medicine clinically used for the treatment of viral respiratory infection symptoms in most countries. We evaluated the effects of the herb on influenza virus replication in human lung cultured cells (A549) following the det...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1309.7340 شماره
صفحات -
تاریخ انتشار 2013